Determinants and Matrices

Have you ever wondered how mathematicians and scientists tackled tough calculations and solved intricate systems of equations? Their secret? Determinants and matrices. These are key concepts that are incredibly helpful. In this article, we'll explore what determinants and matrices are and how they are applied.

Matrix

A matrix is a grid of numbers, symbols, or expressions organized in rows and columns. It's commonly used to solve sets of linear equations and can be changed using operations like adding, subtracting, and multiplying.

The matrix is represent as

{"mathml":"<math style=\"font-family:stix;font-size:16px;\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathsize=\"16px\"><mfenced open=\"[\" close=\"]\"><mtable><mtr><mtd><msup><mi>a</mi><mn>1</mn></msup></mtd><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd><mtd><msup><mi>a</mi><mi>n</mi></msup></mtd></mtr><mtr><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd></mtr><mtr><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd></mtr><mtr><mtd><msup><mi>a</mi><mi>m</mi></msup></mtd><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd><mtd><msup><mi>a</mi><mi>n</mi></msup></mtd></mtr></mtable></mfenced></mstyle></math>","truncated":false}

The determinant is a single number calculated for a square matrix. It tells us important things about matrices, like whether they can be inverted, and it's useful for solving equations.

To find the determinant of a matrix, you use a formula based on its numbers. This number helps us understand the matrix's characteristics and how it relates to other matrices.

A determinant is represented as:

|A| = {"mathml":"<math style=\"font-family:stix;font-size:16px;\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathsize=\"16px\"><mfenced open=\"|\" close=\"|\"><mtable><mtr><mtd><mi>a</mi></mtd><mtd><mi>b</mi></mtd><mtd><mi>c</mi></mtd><mtd><mi>d</mi></mtd><mtd><mi>e</mi></mtd></mtr><mtr><mtd><mi>f</mi></mtd><mtd><mi>g</mi></mtd><mtd><mi>h</mi></mtd><mtd><mi>i</mi></mtd><mtd><mi>j</mi></mtd></mtr><mtr><mtd><mi>k</mi></mtd><mtd><mi>l</mi></mtd><mtd><mi>m</mi></mtd><mtd><mi>n</mi></mtd><mtd><mi>o</mi></mtd></mtr><mtr><mtd><mi>p</mi></mtd><mtd><mi>q</mi></mtd><mtd><mi>r</mi></mtd><mtd><mi>s</mi></mtd><mtd><mi>t</mi></mtd></mtr></mtable></mfenced></mstyle></math>","truncated":false}

Also Check: 4X4 Matrix Determinant | Determinant of Matrix

Types of Matrix

There are several types of matrices commonly encountered:

Row Matrix: A matrix with only one row, like [1 2 3].

Column Matrix: A matrix with only one column.

Square Matrix: A matrix with the same number of rows and columns.

Diagonal Matrix: A matrix where all non-diagonal entries are zero.

Identity Matrix: A square matrix with ones on the diagonal and zeros elsewhere.

Scalar Matrix: A matrix where all entries are the same scalar value.

Upper Triangular Matrix: A square matrix where all entries below the main diagonal are zero.

Lower Triangular Matrix: A square matrix where all entries above the main diagonal are zero.

Understanding these types of matrices is important in mathematics

Inverse Matrix

An inverse matrix is a special matrix that, when multiplied with another matrix, gives the identity matrix as the result. The identity matrix is a square matrix where all diagonal elements are 1 and all other elements are 0. Not every matrix has an inverse; it exists only if the determinant of the matrix is non-zero. In simple terms, multiplying a matrix by its inverse results in the identity matrix.

For instance, if we have matrix B and its inverse B-1, then BB-1 = B-1B = I, where I is the identity matrix.

Transpose of a Matrix

A transpose of a matrix is a new matrix formed by swapping its rows with its columns. If we have a matrix B with dimensions m x n (m rows and n columns), its transpose, denoted as B^T, will have dimensions n x m (n rows and m columns).

The transpose of a matrix involves flipping elements along its diagonal. For instance, if we have a matrix:
 

{"mathml":"<math style=\"font-family:stix;font-size:16px;\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathsize=\"16px\"><mfenced open=\"[\" close=\"]\"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd><mtd><mn>5</mn></mtd><mtd><mn>6</mn></mtd></mtr><mtr><mtd><mn>7</mn></mtd><mtd><mn>8</mn></mtd><mtd><mn>9</mn></mtd></mtr></mtable></mfenced></mstyle></math>","truncated":false}

Then the transpose of this matrix is:

{"mathml":"<math style=\"font-family:stix;font-size:16px;\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathsize=\"16px\"><mfenced open=\"[\" close=\"]\"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>4</mn></mtd><mtd><mn>7</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd><mtd><mn>5</mn></mtd><mtd><mn>8</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>6</mn></mtd><mtd><mn>9</mn></mtd></mtr></mtable></mfenced></mstyle></math>","truncated":false}

Determinants

 

The determinant is a single number that tells us about the size and orientation of a matrix. It's important because it helps us understand key properties of the matrix like whether it can be inverted, its rank, and its eigenvalues.

We denote the determinant of a matrix A as |A|.

To find the determinant of a matrix, we focus on the elements of its top row and the smaller matrices associated with each element. We start with the first element of the top row and multiply it by its associated smaller matrix (called a minor). Then, we alternate adding and subtracting the products of each subsequent top row element with its minor until we've considered all elements in the top row.
 

{"mathml":"<math style=\"font-family:stix;font-size:16px;\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathsize=\"16px\"><mi>A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open=\"[\" close=\"]\"><mtable><mtr><mtd><mi>a</mi></mtd><mtd><mi>b</mi></mtd><mtd><mi>c</mi></mtd><mtd><mi>d</mi></mtd><mtd><mi>e</mi></mtd></mtr><mtr><mtd><mi>f</mi></mtd><mtd><mi>g</mi></mtd><mtd><mi>h</mi></mtd><mtd><mi>i</mi></mtd><mtd><mi>j</mi></mtd></mtr><mtr><mtd><mi>k</mi></mtd><mtd><mi>l</mi></mtd><mtd><mi>m</mi></mtd><mtd><mi>n</mi></mtd><mtd><mi>o</mi></mtd></mtr><mtr><mtd><mi>p</mi></mtd><mtd><mi>q</mi></mtd><mtd><mi>r</mi></mtd><mtd><mi>s</mi></mtd><mtd><mi>t</mi></mtd></mtr></mtable></mfenced></mstyle></math>","truncated":false}

Now, its determinant |A| will be defined as

{"mathml":"<math style=\"font-family:stix;font-size:16px;\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathsize=\"16px\"><mfenced open=\"|\" close=\"|\"><mtable><mtr><mtd><mi>a</mi></mtd><mtd><mi>b</mi></mtd><mtd><mi>c</mi></mtd><mtd><mi>d</mi></mtd><mtd><mi>e</mi></mtd></mtr><mtr><mtd><mi>f</mi></mtd><mtd><mi>g</mi></mtd><mtd><mi>h</mi></mtd><mtd><mi>i</mi></mtd><mtd><mi>j</mi></mtd></mtr><mtr><mtd><mi>k</mi></mtd><mtd><mi>l</mi></mtd><mtd><mi>m</mi></mtd><mtd><mi>n</mi></mtd><mtd><mi>o</mi></mtd></mtr><mtr><mtd><mi>p</mi></mtd><mtd><mi>q</mi></mtd><mtd><mi>r</mi></mtd><mtd><mi>s</mi></mtd><mtd><mi>t</mi></mtd></mtr></mtable></mfenced></mstyle></math>","truncated":false}

Types of Determinants

 

Determinants come in three types:

  1. Scalar Determinants: These use a single number to describe a matrix's characteristics.

  2. Matrix Determinants: These are special scalar determinants represented by square matrices.

  3. Vector Determinants: These deal with vectors and vector spaces, not matrices. They help determine how vectors are oriented in space

Properties of Determinants

The properties of determinants are:

  1. Multiplicity: If you have two matrices X and Y of the same size, then the determinant of their product XY is equal to the product of their determinants, det(XY) = det(X) * det(Y).

  2. Invertibility: A square matrix can be inverted if its determinant is non-zero. If the inverse of matrix X is X^-1, then X * X^-1 = 1 and det(X) * det(X^-1) = 1.

  3. Triangular Matrix: The determinant of a triangular matrix is the product of its diagonal elements.

  4. Transpose: For a matrix X, if you transpose it to get XT, the determinants of X and XT are equal, det(X) = det(XT).

  5. Zero Matrix: If all elements of a matrix are zero, its determinant is zero.

  6. Eigenvalues: The determinant of a matrix equals the product of its eigenvalues.

  7. Linearity: For matrices A, B, and C, det(A * B + C) = det(A) * det(B) + det(C).

Finding the determinant of 2x2 matrix: 
 

{"mathml":"<math style=\"font-family:stix;font-size:16px;\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathsize=\"16px\"><mi>A</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mfenced open=\"[\" close=\"]\"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced></mstyle></math>","truncated":false}

Then, 

{"mathml":"<math style=\"font-family:stix;font-size:16px;\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathsize=\"16px\"><mfenced open=\"|\" close=\"|\"><mtable><mtr><mtd><mi>A</mi></mtd></mtr></mtable></mfenced><mo>=</mo><mo>&#xA0;</mo><mfenced open=\"|\" close=\"|\"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced></mstyle></math>","truncated":false}

|A| = a11a22 - a21a12

 

Related Links

Frequently Asked Questions on Determinants and Matrices

Matrices are grids of numbers organized in rows and columns. The determinant is a special number calculated using the elements of the matrix.

In a matrix, numbers are arranged within two rectangular brackets, whereas in a determinant, numbers are enclosed within two bars or a modulus sign. A matrix is a collection of numbers arranged in rows and columns, while a determinant is a single value associated with that matrix.

Important Properties of Determinants

  • Reflection Property.
  • All-zero Property.
  • Proportionality.
  • Switching property.
  • Factor property.
  • Scalar multiple properties.
  • Sum property.
  • Triangle property.

The determinant of a matrix is unchanged regardless of whether you calculate it using rows or columns. If all elements in a row or column are zero, the determinant equals 0. For an identity matrix (In), the determinant is 1. Swapping rows or columns doesn’t change the determinant’s value.