GATE Syllabus 2025

GATE Syllabus 2025 Overview

The Graduate Aptitude Test in Engineering (GATE) is an exam that helps you get admission to top institutes like IITs and NITs for Masters's programs. It also helps in getting jobs at Public Sector Undertakings (PSUs). The GATE syllabus tells you what topics the questions will cover. In this article, we will talk about the GATE syllabus for all streams for the GATE exam.

The GATE syllabus gives you an idea of where the questions will come from in the exam, which helps you score well. There are many streams for which thae GATE exam is conducted. Starting from last year, GATE 2024, a new stream for Data Science and Artificial Intelligence (DA) has been added. This year, IIT Roorkee will conduct the exam and will release the official notification for GATE 2025.

GATE Syllabus 2025

The GATE 2025 syllabus is available here in PDF format for easy access. It includes all the topics and sub-topics for the exam. Applicants should download the GATE 2025 Syllabus PDF to start their preparation accordingly

GATE 2025 Syllabus Overview
Particulars Details
Exam Name GATE 2025 Exam
GATE Full Form Graduate Aptitude Test In Engineering
Organizing Authority Indian Institute of Technology Roorkee
GATE Syllabus 2025 Release Date July 2024
GATE Syllabus 2025 Official Website  https://gate2025.iitr.ac.in/
Sections in GATE Syllabus 2025
  • General Aptitude
  • Engineering Mathematics
  • Core Engineering Disciplines
Total No. of Papers 30
GATE 2025 Exam Date February 2025
GATE 2025 Official Website www.gate.iitr.ac.in

GATE Exam Syllabus 2025 For All Subjects

To prepare for the GATE exam, start by downloading the GATE 2025 syllabus PDF. After downloading, go through all the topics and chapters carefully. You can download the syllabus for each subject from the table provided. Make sure to cover every topic at least a month before the exam for proper revision. The link to download the IIT Roorkee GATE 2025 syllabus is available here. Meanwhile, you can also check the previous year's syllabus below.

GATE Syllabus 2025 - Course wise

Usually, the GATE syllabus stays the same every year. If there are any changes, the authorities inform students ahead of time. In the GATE 2024 syllabus, IISc Bangalore introduced a new paper for Data Science and AI Engineering. In 2022, subjects like ES (Environmental Science and Engineering) and XH (Humanities and Social Sciences) were added. In 2021, NM (Naval Architecture and Marine Engineering) and GE (Geomatics Engineering) were included in the syllabus.

GATE CSE Syllabus 2025

GATE CSE Syllabus 2025
Topics Sub-Topics
Discrete Mathematics   Propositional and first order logic. Sets, relations, functions, partial orders and lattices. Monoids, Groups. Graphs: connectivity, matching, coloring. Combinatorics: counting, recurrence relations, generating functions
Digital Logic Boolean algebra. Combinational and sequential circuits. Minimization. Number representations and computer arithmetic (fixed and floating-point)
Computer Organization and Architecture Machine instructions and addressing modes. ALU, data‐path and control unit. Instruction pipelining, pipeline hazards. Memory hierarchy: cache, main memory and secondary storage; I/O interface (interrupt and DMA mode)
Programming and Data Structures Programming in C. Recursion. Arrays, stacks, queues, linked lists, trees, binary search trees, binary heaps, graphs
Algorithms Searching, sorting, hashing. Asymptotic worst-case time and space complexity. Algorithm design techniques: greedy, dynamic programming and divide‐and‐conquer. Graph traversals, minimum spanning trees, shortest paths
Theory of Computation Regular expressions and finite automata. Context-free grammars and push-down automata. Regular and contex-free languages, pumping lemma. Turing machines and undecidability.
Compiler Design Lexical analysis, parsing, syntax-directed translation. Runtime environments. Intermediate code generation. Local optimization, Data flow analyses: constant propagation, liveness analysis, common subexpression elimination
Operating System System calls, processes, threads, inter‐process communication, concurrency and synchronization. Deadlock. CPU and I/O scheduling. Memory management and virtual memory. File systems
Databases ER‐model. Relational model: relational algebra, tuple calculus, SQL. Integrity constraints, normal forms. File organization, indexing (e.g., B and B+ trees). Transactions and concurrency control
Computer Networks Concept of layering: OSI and TCP/IP Protocol Stacks; Basics of packet, circuit and virtual circuit-switching; Data link layer: framing, error detection, Medium Access Control, Ethernet bridging; Routing protocols: shortest path, flooding, distance vector and link-state routing; Fragmentation and IP addressing, IPv4, CIDR notation, Basics of IP support protocols (ARP, DHCP, ICMP), Network Address Translation (NAT); Transport layer: flow control and congestion control, UDP, TCP, sockets; Application layer protocols: DNS, SMTP, HTTP, FTP

GATE Electrical Syllabus 2025

GATE Electrical Syllabus 2025
Topics Sub-Topics
Electric Circuits: Network elements ideal voltage and current sources, dependent sources, R, L, C, M elements; Network solution methods: KCL, KVL, Node and Mesh analysis; Network Theorems: Thevenin’s, Norton’s, Superposition and Maximum Power Transfer theorem; Transient response of dc and ac networks, sinusoidal steady-state analysis, resonance, two port networks, balanced three phase circuits, star-delta transformation, complex power and power factor in ac circuits
Electromagnetic Fields Coulomb’s Law, Electric Field Intensity, Electric Flux Density, Gauss’s Law, Divergence, Electric field and potential due to point, line, plane and spherical charge distributions, Effect of dielectric medium, Capacitance of simple configurations, Biot‐Savart’s law, Ampere’s law, Curl, Faraday’s law, Lorentz force, Inductance, Magnetomotive force, Reluctance, Magnetic circuits, Self and Mutual inductance of simple configurations
Signals and Systems Representation of continuous and discrete-time signals, shifting and scaling properties, linear time-invariant and causal systems, Fourier series representation of continuous and discrete-time periodic signals, sampling theorem, Applications of Fourier Transform for continuous and discrete-time signals, Laplace Transform and Z transform. R.M.S. value, average value calculation for any general periodic waveform
Electrical Machines Single-phase transformer: equivalent circuit, phasor diagram, open circuit and short circuit tests, regulation and efficiency; Three-phase transformers: connections, vector groups, parallel operation; Auto-transformer, Electromechanical energy conversion principles; DC machines: separately excited, series and shunt, motoring and generating mode of operation and their characteristics, speed control of dc motors; Three-phase induction machines: principle of operation, types, performance, torque-speed characteristics, no-load and blocked-rotor tests, equivalent circuit, starting and speed control; Operating principle of single-phase induction motors; Synchronous machines: cylindrical and salient pole machines, performance and characteristics, regulation and parallel operation of generators, starting of synchronous motors; Types of losses and efficiency calculations of electric machines
Power Systems Basic concepts of electrical power generation, ac and dc transmission concepts, Models and performance of transmission lines and cables, Economic Load Dispatch (with and without considering transmission losses), Series and shunt compensation, Electric field distribution and insulators, Distribution systems, Per‐unit quantities, Bus admittance matrix, Gauss-Seidel and Newton-Raphson load flow methods, Voltage and Frequency Control, Power factor correction, Symmetrical components, Symmetrical and unsymmetrical fault analysis, Principles of overcurrent, differential, directional and distance protection; Circuit breakers, System stability concepts, Equal area criterion
Control Systems Mathematical modeling and representation of systems, Feedback principle, transfer function, Block diagrams and signal flow graphs, Transient and Steady‐state analysis of linear time-invariant systems, Stability analysis using Routh-Hurwitz and Nyquist criteria, Bode plots, root loci, Lag, Lead and Lead‐Lag compensators; P, PI and PID controllers; State-space model, Solution of state equations of LTI systems
Electrical and Electronic Measurements Bridges and Potentiometers, Measurement of voltage, current, power, energy and power factor; Instrument transformers, Digital voltmeters and multimeters, Phase, Time and Frequency measurement; Oscilloscopes, Error analysis
Analog and Digital Electronics Simple diode circuits: clipping, clamping, rectifiers; Amplifiers: biasing, equivalent circuit and frequency response; oscillators and feedback amplifiers; operational amplifiers: characteristics and applications; single-stage active filters, Active Filters: Sallen Key, Butterwoth, VCOs and timers, combinatorial and sequential logic circuits, multiplexers, demultiplexers, Schmitt triggers, sample and hold circuits, A/D and D/A converters
Power Electronics Static V-I characteristics and firing/gating circuits for Thyristor, MOSFET, IGBT; DC to DC conversion: Buck, Boost and Buck-Boost Converters; Single and three-phase configuration of uncontrolled rectifiers; Voltage and Current commutated Thyristor based converters; Bidirectional ac to dc voltage source converters; Magnitude and Phase of line current harmonics for uncontrolled and thyristor-based converters; Power factor and Distortion Factor of ac to dc converters; Single-phase and three-phase voltage and current source inverters, sinusoidal pulse width modulation

 

GATE Mechanical Engineering Syllabus 2025

GATE Mechanical Syllabus 2025
Topics Sub-Topics
Applied Mechanics and Design
Engineering Mechanics Free-body diagrams and equilibrium; friction and its applications including rolling friction, belt-pulley, brakes, clutches, screw jack, wedge, vehicles, etc.; trusses and frames; virtual work; kinematics and dynamics of rigid bodies in plane motion; impulse and momentum (linear and angular) and energy formulations; Lagrange’s equation
Mechanics of Materials Stress and strain, elastic constants, Poisson’s ratio; Mohr’s circle for plane stress and plane strain; thin cylinders; shear force and bending moment diagrams; bending and shear stresses; concept of shear centre; deflection of beams; torsion of circular shafts; Euler’s theory of columns; energy methods; thermal stresses; strain gauges and rosettes; testing of materials with universal testing machine; testing of hardness and impact strength
Theory of Machines Displacement, velocity and acceleration analysis of plane mechanisms; dynamic analysis of linkages; cams; gears and gear trains; flywheels and governors; balancing of reciprocating and rotating masses; gyroscope
Vibrations Free and forced vibration of single degree of freedom systems, effect of damping; vibration isolation; resonance; critical speeds of shafts
Machine Design Design for static and dynamic loading; failure theories; fatigue strength and the SN diagram; principles of the design of machine elements such as bolted, riveted and welded joints; shafts, gears, rolling and sliding contact bearings, brakes and clutches, springs
Fluid Mechanics and Thermal Sciences
Fluid Mechanics Fluid properties; fluid statics, forces on submerged bodies, stability of floating bodies; control-volume analysis of mass, momentum and energy; fluid acceleration; differential equations of continuity and momentum; Bernoulli’s equation; dimensional analysis; viscous flow of incompressible fluids, boundary layer, elementary turbulent flow, flow through pipes, head losses in pipes, bends and fittings; basics of compressible fluid flow
Heat-Transfer Modes of heat transfer; one-dimensional heat conduction, resistance concept and electrical analogy, heat transfer through fins; unsteady heat conduction, lumped parameter system, Heisler’s charts; thermal boundary layer, dimensionless parameters in free and forced convective heat transfer, heat transfer correlations for flow over flat plates and through pipes, effect of turbulence; heat exchanger performance, LMTD and NTU methods; radiative heat transfer, Stefan-Boltzmann law, Wien’s displacement law, black and grey surfaces, view factors, radiation network analysis
Thermodynamics Thermodynamic systems and processes; properties of pure substances, behavior of ideal and real gases; zeroth and first laws of thermodynamics, calculation of work and heat in various processes; second law of thermodynamics; thermodynamic property charts and tables, availability and irreversibility; thermodynamic relations
Applications Power Engineering: Air and gas compressors; vapour and gas power cycles, concepts of regeneration and reheat. I.C. Engines: Air-standard Otto, Diesel and dual cycles. Refrigeration and air-conditioning: Vapour and gas refrigeration and heat pump cycles; properties of moist air, psychrometric chart, basic psychrometric processes. Turbomachinery: Impulse and reaction principles, velocity diagrams, Pelton-wheel, Francis and Kaplan turbines; steam and gas turbines
Materials, Manufacturing, and Industrial Engineering
Engineering Materials Structure and properties of engineering materials, phase diagrams, heat treatment, stress-strain diagrams for engineering materials
Casting, Forming and Joining Processes Different types of castings, design of patterns, molds and cores; solidification and cooling; riser and gating design. Plastic deformation and yield criteria; fundamentals of hot and cold working processes; load estimation for bulk (forging, rolling, extrusion, drawing) and sheet (shearing, deep drawing, bending) metal forming processes; principles of powder metallurgy. Principles of welding, brazing, soldering and adhesive bonding
Machining and Machine Tool Operations Mechanics of machining; basic machine tools; single and multi-point cutting tools, tool geometry and materials, tool life and wear; economics of machining; principles of non-traditional machining processes; principles of work holding, jigs and fixtures; abrasive machining processes; NC/CNC machines and CNC programming
Metrology and Inspection Limits, fits and tolerances; linear and angular measurements; comparators; interferometry; form and finish measurement; alignment and testing methods; tolerance analysis in manufacturing and assembly; concepts of coordinate-measuring machine (CMM)
Computer Integrated Manufacturing Basic concepts of CAD/CAM and their integration tools; additive manufacturing
Production Planning and Control Forecasting models, aggregate production planning, scheduling, materials requirement planning; lean manufacturing
Inventory Control Deterministic models; safety stock inventory control systems
Operations Research Linear programming, simplex method, transportation, assignment, network flow models, simple queuing models, PERT and CPM

GATE IE Syllabus 2025

GATE Instrumentation Engineering Syllabus 2025
Subject Topics
Engineering Mathematics
  • Linear Algebra
  • Calculus
  • Differential Equations
  • Analysis of Complex Variables
  • Probability and Statistics
  • Numerical Methods
Electricity and Magnetism Coulomb’s Law, Electric Field Intensity, Electric Flux Density, Gauss’s Law, Divergence, Electric field and potential due to point, line, plane, and spherical charge distributions, Effect of the dielectric medium, Capacitance of simple configurations, Biot‐Savart’s law, Ampere’s law, Curl, Faraday’s law, Lorentz force, Inductance, Magnetomotive force, Reluctance, Magnetic circuits, Self and Mutual inductance of simple configurations.
Electrical Circuits and Machines Voltage and current sources: independent, dependent, ideal and practical; v-i relationships of resistor, inductor, mutual inductance and capacitor; transient analysis of RLC circuits with dc excitation. Kirchoff’s laws, mesh and nodal analysis, superposition, Thevenin, Norton, maximum power transfer and reciprocity theorems. Peak-, average- and rms values of ac quantities; apparent-, active- and reactive powers; phasor analysis, impedance and admittance; series and parallel resonance, locus diagrams, realization of basic filters with R, L and C elements. transient analysis of RLC circuits with ac excitation. One-port and two-port networks, driving point impedance and admittance, open-, and short circuit parameters. Single-phase transformer: equivalent circuit, phasor diagram, open circuit and short circuit tests, regulation and efficiency; Three-phase induction motors: principle of operation, types, performance, torque-speed characteristics, no-load and blocked rotor tests, equivalent circuit, starting and speed control; Types of losses and efficiency calculations of electric machines
Signals and Systems Periodic, aperiodic and impulse signals; Laplace, Fourier and z-transforms; transfer function, frequency response of first and second-order linear time-invariant systems, impulse response of systems; convolution, correlation. Discrete-time system: impulse response, frequency response, pulse transfer function; DFT and FFT; basics of IIR and FIR filters.
Control Systems Feedback principles, signal flow graphs, transient response, steady-state-errors, Bode plot, phase and gain margins, Routh and Nyquist criteria, root loci, design of lead, lag and lead-lag compensators, state-space representation of systems; time-delay systems; mechanical, hydraulic and pneumatic system components, synchro pair, servo and stepper motors, servo valves; on-off, P, PI, PID, cascade, feedforward, and ratio controllers, tuning of PID controllers and sizing of control valves.
Analog Electronics Characteristics and applications of diode, Zener diode, BJT and MOSFET; small-signal analysis of transistor circuits, feedback amplifiers. Characteristics of ideal and practical operational amplifiers; applications: adder, subtractor, integrator, differentiator, difference amplifier, instrumentation amplifier, precision rectifier, active filters, oscillators, signal generators, voltage-controlled oscillators and phase-locked loop, sources and effects of noise and interference in electronic circuits.
Digital Electronics Combinational logic circuits, minimization of Boolean functions. IC families: TTL and CMOS. Arithmetic circuits, comparators, Schmitt trigger, multi-vibrators, sequential circuits, flipflops, shift registers, timers and counters; sample-and-hold circuit, multiplexer, analog-to-digital (successive approximation, integrating, flash and sigma-delta) and digital-to-analog converters (weighted R, R-2R ladder and current steering logic). Characteristics of ADC and DAC (resolution, quantization, significant bits, conversion/settling time); basics of number systems, Embedded Systems: Microprocessor and microcontroller applications, memory and input-output interfacing; basics of data acquisition systems, basics of distributed control systems (DCS) and programmable logic controllers (PLC).
Measurements SI units, standards (R,L,C, voltage, current and frequency), systematic and random errors in measurement, expression of uncertainty – accuracy and precision, propagation of errors, linear and weighted regression. Bridges: Wheatstone, Kelvin, Megohm, Maxwell, Anderson, Schering and Wien for measurement of R, L, Cand frequency, Q-meter. Measurement of voltage, current and power in single and three phase circuits; ac and dc current probes; true rms meters, voltage and current scaling, instrument transformers, timer/counter, time, phase and frequency measurements, digital voltmeter, digital multimeter; oscilloscope, shielding and grounding.
Sensors and Industrial Instrumentation Resistive-, capacitive-, inductive-, piezoelectric-, Hall effect sensors and associated signal conditioning circuits; transducers for industrial instrumentation: displacement (linear and angular), velocity, acceleration, force, torque, vibration, shock, pressure (including low pressure), flow (variable head, variable area, electromagnetic, ultrasonic, turbine and open channel flow meters) temperature (thermocouple, bolometer, RTD (3/4 wire), thermistor, pyrometer and semiconductor); liquid level, pH, conductivity and viscosity measurement. 4-20 mA two-wire transmitter.
Communication and Optical Instrumentation Amplitude- and frequency modulation and demodulation; Shannon’s sampling theorem, pulse code modulation; frequency and time division multiplexing, amplitude-, phase-, frequency-, quadrature amplitude, pulse shift keying for digital modulation; optical sources and detectors: LED, laser, photo-diode, light-dependent resistor, square-law detectors, and their characteristics; interferometer: applications in metrology; basics of fiber optic sensing. UV-VIS Spectrophotometers, Mass spectrometer.

GATE ECE Syllabus 2025

GATE ECE Syllabus 2025
Sl. No. Sections Topic-Wise Syllabus
1 Engineering Mathematics
  • Linear Algebra
  • Calculus
  • Differential Equations
  • Vector Analysis
2 Networks, Signals and Systems Circuit analysis: Node and mesh analysis, superposition, Thevenin’s theorem, Norton’s theorem, reciprocity. Sinusoidal steady state analysis: phasors, complex power, maximum power transfer. Time and frequency domain analysis of linear circuits: RL, RC and RLC circuits, solution of network equations using Laplace transform, Linear 2-port network parameters, wye-delta transformation

 

Continuous-time signals: Fourier series and Fourier transform, sampling theorem and applications

Discrete-time signals: DTFT, DFT, z-transform, discrete-time processing of continuous-time signals. LTI systems: definition and properties, causality, stability, impulse response, convolution, poles and zeroes, frequency response, group delay, phase delay

3 Electronic Devices
  • Energy bands in intrinsic and extrinsic semiconductors, equilibrium carrier concentration, direct and indirect band-gap semiconductors.
  • Carrier transport: diffusion current, drift current, mobility and resistivity, generation and recombination of carriers, Poisson, and continuity equations. P-N junction, Zener diode, BJT, MOS capacitor, MOSFET, LED, photodiode, and solar cell.
4 Analog Circuits
  • Diode circuits: clipping, clamping, and rectifiers.
  • BJT and MOSFET amplifiers: biasing, ac coupling, small-signal analysis, frequency response. Current mirrors and differential amplifiers.
  • Op-amp circuits: Amplifiers, summers, differentiators, integrators, active filters, Schmitt triggers, and oscillators
5 Digital Circuits
  • Number representations: binary, integer, and floating-point- numbers.
  • Combinatorial circuits: Boolean algebra, minimization of functions using Boolean identities and Karnaugh map, logic gates, and their static CMOS implementations, arithmetic circuits, code converters, multiplexers, and decoders.
  • Sequential circuits: latches and flip-flops, counters, shift-registers, finite state machines, propagation delay, setup and hold time, critical path delay.
  • Data converters: sample and hold circuits, ADCs, and DACs.
  • Semiconductor memories: ROM, SRAM, DRAM.
  • Computer organization: Machine instructions and addressing modes, ALU, data-path, control unit, instruction pipelining
6 Control Systems Basic control system components; Feedback principle; Transfer function; Block diagram representation; Signal flow graph; Transient and steady-state analysis of LTI systems; Frequency response; Routh-Hurwitz and Nyquist stability criteria; Bode and root-locus plots; Lag, lead and lag-lead compensation; State variable model and solution of state equation of LTI systems.
7 Communications
  • Random processes: autocorrelation and power spectral density, properties of white noise, filtering of random signals through LTI systems.
  • Analog communications: amplitude modulation and demodulation, angle modulation and demodulation, spectra of AM and FM, superheterodyne receivers.
  • Information theory: entropy, mutual information, and channel capacity theorem.
  • Digital communications: PCM, DPCM, digital modulation schemes (ASK, PSK, FSK, QAM), bandwidth, inter-symbol interference, MAP, ML detection, matched filter receiver, SNR, and BER.
  • Fundamentals of error correction, Hamming codes, CRC.
8 Electromagnetics
  • Maxwell’s equations: differential and integral forms and their interpretation, boundary conditions, wave equation, Poynting vector.
  • Plane waves and properties: reflection and refraction, polarization, phase and group velocity, propagation through various media, skin depth.
  • Transmission lines: equations, characteristic impedance, impedance matching, impedance transformation, S-parameters, Smith chart.
  • Rectangular and circular waveguides, light propagation in optical fibers, dipole and monopole antennas, linear antenna arrays.

 

GATE CE Syllabus 2025

GATE CE Syllabus 2025
Topics Sub-Topics
Structural Engineering
Engineering Mechanics System of forces, free-body diagrams, equilibrium equations; Internal forces in structures; Frictions and its applications; Centre of mass; Free Vibrations of undamped SDOF system
Solid Mechanics Bending moment and shear force in statically determinate beams; Simple stress and strain relationships; Simple bending theory, flexural and shear stresses, shear centre; Uniform torsion, Transformation of stress; buckling of column, combined and direct bending stresses
Structural Analysis Statically determinate and indeterminate structures by force/ energy methods; Method of superposition; Analysis of trusses, arches, beams, cables and frames; Displacement methods: Slope deflection and moment distribution methods; Influence lines; Stiffness and flexibility methods of structural analysis
Construction Materials and Management Construction Materials: Structural Steel – Composition, material properties and behavior; Concrete – Constituents, mix design, short-term and long-term properties. Construction Management: Types of construction projects; Project planning and network analysis – PERT and CPM; Cost estimation
Concrete Structures Working stress and Limit state design concepts; Design of beams, slabs, columns; Bond and development length; Prestressed concrete beams
Steel Structures Working stress and Limit state design concepts; Design of tension and compression members, beams and beam-columns, column bases; Connections – simple and eccentric, beam-column connections, plate girders and trusses; Concept of plastic analysis -beams and frames
Geotechnical Engineering
Soil Mechanics Three-phase system and phase relationships, index properties; Unified and Indian standard soil classification system; Permeability – one-dimensional flow, Seepage through soils – two – dimensional flow, flow nets, uplift pressure, piping, capillarity, seepage force; Principle of effective stress and quicksand condition; Compaction of soils; One- dimensional consolidation, time rate of consolidation; Shear Strength, Mohr’s circle, effective and total shear strength parameters, Stress-Strain characteristics of clays and sand; Stress paths
Foundation Engineering Sub-surface investigations – Drilling boreholes, sampling, plate load test, standard penetration and cone penetration tests; Earth pressure theories – Rankine and Coulomb; Stability of slopes – Finite and infinite slopes, Bishop’s method; Stress distribution in soils – Boussinesq’s theory; Pressure bulbs, Shallow foundations – Terzaghi’s and Meyerhoff’s bearing capacity theories, effect of water table; Combined footing and raft foundation; Contact pressure; Settlement analysis in sands and clays; Deep foundations – dynamic and static formulae, Axial load capacity of piles in sands and clays, pile load test, pile under lateral loading, pile group efficiency, negative skin friction
Water Resources Engineering
Fluid Mechanics Properties of fluids, fluid statics; Continuity, momentum and energy equations and their applications; Potential flow, Laminar and turbulent flow; Flow in pipes, pipe networks; Concept of boundary layer and its growth; Concept of lift and drag
Hydraulics Forces on immersed bodies; Flow measurement in channels and pipes; Dimensional analysis and hydraulic similitude; Channel Hydraulics – Energy-depth relationships, specific energy, critical flow, hydraulic jump, uniform flow, gradually varied flow and water surface profiles
Hydrology Hydrologic cycle, precipitation, evaporation, evapotranspiration, watershed, infiltration, unit hydrographs, hydrograph analysis, reservoir capacity, flood estimation and routing, surface runoff models, groundwater hydrology – steady state well hydraulics and aquifers; Application of Darcy’s Law
Irrigation Types of irrigation systems and methods; Crop water requirements – Duty, delta, evapotranspiration; Gravity Dams and Spillways; Lined and unlined canals, Design of weirs on permeable foundation; cross drainage structures
Environmental Engineering
Water and Waste Water Quality and Treatment Basics of water quality standards – Physical, chemical and biological parameters; Water quality index; Unit processes and operations; Water requirement; Water distribution system; Drinking water treatment;
Sewerage system design, quantity of domestic wastewater, primary and secondary treatment. Effluent discharge standards; Sludge disposal; Reuse of treated sewage for different applications
Air Pollution Types of pollutants, their sources and impacts, air pollution control, air quality standards, Air quality Index and limits
Municipal Solid Wastes Characteristics, generation, collection and transportation of solid wastes, engineered systems for solid waste management (reuse/ recycle, energy recovery, treatment and disposal)
Transportation Engineering
Transportation Infrastructure Geometric design of highways – cross-sectional elements, sight distances, horizontal and vertical alignments. Geometric design of railway Track – Speed and Cant. Concept of airport runway length, calculations and corrections; taxiway and exit taxiway design
Highway Pavements Highway materials – desirable properties and tests; Desirable properties of bituminous paving mixes; Design factors for flexible and rigid pavements; Design of flexible and rigid pavement using IRC codes
Traffic Engineering Traffic studies on flow and speed, peak hour factor, accident study, statistical analysis of traffic data; Microscopic and macroscopic parameters of traffic flow, fundamental relationships; Traffic signs; Signal design by Webster’s method; Types of intersections; Highway capacity
Geomatics Engineering
Geomatics Engineering Principles of surveying; Errors and their adjustment; Maps – scale, coordinate system; Distance and angle measurement – Levelling and trigonometric levelling; Traversing and triangulation survey; Total station; Horizontal and vertical curves. Photogrammetry and Remote Sensing – Scale, flying height; Basics of remote sensing and GIS

Chapter Wise Solutions - Download Free PDF

Related Links

Frequently Asked Questions on GATE Syllabus 2025

Yes, the GATE 2025 syllabus has been released.

It is best to start preparing at least one year in advance.

IIT Bombay is organizing GATE 2025.

The GATE GG (Geology and Geophysics) syllabus covers geology, geophysics, and related subjects.

GATE 2025 has fields like CSE, ECE, EE, ME, and more.

Start preparing at least one year before the exam.

Fields include Computer Science, Electronics, Electrical, Mechanical, and more.

The CSE syllabus includes programming, data structures, algorithms, databases, and computer networks.

Begin your preparation at least one year before the exam date.

The GATE CSE syllabus mostly remains the same each year.

The GATE EE (Electrical Engineering) syllabus covers circuits, machines, power systems, and more.

The ECE syllabus includes electronics, communications, signals, and systems.

It's recommended to start preparing at least one year before the exam.