What is the Power of Product Property?


For non-zero integers a and b, (π‘Ž Γ— 𝑏)π‘šΒ = π‘Žπ‘šΒ Γ— π‘π‘š, where m is an integer.

For example,

(2 Γ— 3)2Β = 22Β Γ— 32.

The term (π‘Ž Γ— 𝑏)π‘šΒ is read as a raised to b the whole raised to m.

What is the Power of quotient property?

For non-zero integers a and b, (π‘Ž Γ· 𝑏)π‘šΒ = π‘Žπ‘šΒ Γ· π‘π‘š, where m is an integer.

For example,

(2 Γ· 7)2Β = 22Β Γ· 72.

The term (π‘Ž Γ· 𝑏)π‘šΒ is read as a divided by b the whole raised to m.

Summary

Power of Product Property For non-zero integers a and b, (π‘Ž Γ— 𝑏)π‘šΒ = π‘Žπ‘šΒ Γ— π‘π‘š,where m is an integer.
Power of Quotient Property For non-zero integers a and b, (π‘Ž Γ· 𝑏)π‘šΒ = π‘Žπ‘šΒ Γ· π‘π‘š,where m is an integer.