Subtraction of polynomials – Example


SubtractΒ (πŸπŸ‘π’‚ + 𝒃 βˆ’ πŸ•π’ƒπ’‚πŸ‘Β βˆ’ πŸ’)π’‡π’“π’π’Ž(π’‚π’ƒπŸ‘Β βˆ’ 𝒃 + πŸ–π’‚ βˆ’ πŸπŸ•π’‚πŸ‘π’ƒ)Β using the column method.

Solution:

Expressing (πŸπŸ‘π’‚ + 𝒃 βˆ’ πŸ•π’ƒπ’‚πŸ‘Β βˆ’ πŸ’) βˆ’ (π’‚π’ƒπŸ‘Β βˆ’ 𝒃 + πŸ–π’‚ βˆ’ πŸπŸ•π’‚πŸ‘π’ƒ) in the column method,

π‘Žπ‘3 -b +8a βˆ’17π‘Ž3𝑏
+b +23a βˆ’7π‘π‘Ž3 -4

In the above arrangement, there is no term under π‘Žπ‘3Β as there is no term in the second expression with the same variables. Also, 17π‘Ž3𝑏 and 7π‘π‘Ž3Β have the same variables with the same exponents. Hence they are like terms.

As this is subtraction, changing the signs in the second expression to solve,

π‘Žπ‘3-b+8aβˆ’17π‘Ž3𝑏

-b-23a+7π‘π‘Ž3+ 4

————————–

π‘Žπ‘3-2b-15aβˆ’10π‘Ž3𝑏+4

Arranging the terms in the descending order of their exponents,βˆ’10π‘Ž3𝑏 + π‘Žπ‘3Β βˆ’ 15π‘Ž βˆ’ 2𝑏 + 4.

Thus, (π‘Žπ‘3Β βˆ’ 𝑏 + 8π‘Ž βˆ’ 17π‘Ž3𝑏) βˆ’ (23π‘Ž + 𝑏 βˆ’ 7π‘π‘Ž3Β βˆ’ 4) = βˆ’10π‘Ž3𝑏 + π‘Žπ‘3Β βˆ’ 15π‘Ž βˆ’ 2𝑏 + 4.