(i) 135 and 225

(ii) 196 and 38220

(iii) 867 and 255

Report
Question

(i) 135 and 225
We know that,
 = 225>135  
 Applying Euclid’s division algorithm
225 = 135 ×1+90                 
Here remainder = 90,
So, Again Applying Euclid’s division algorithm
135 = 90×1+45  
Here  remainder = 45,
So, Again Applying Euclid’s division algorithm
90 = 45×2+0
Remainder = 0,
Hence ,
HCF of (135, 225)  = 45


(ii) 196 and 38220
We know that,
38220>196
So, Applying Euclid’s division algorithm
38220 = 196×195+0              
Remainder = 0
Hence,
HCF of  (196, 38220) = 196
(iii) 867 and 255
We know that,
867>255
So,  Applying Euclid’s division algorithm
867 = 255×3+102                                        
Remainder = 102
So, Again Applying Euclid’s division algorithm
255 = 102×2+51
Remainder = 51
So, Again Applying Euclid’s division algorithm
102 = 51×2+0
Remainder = 0
Hence,
 (HCF 0f 867 and 255) = 51

 

solved 5
wordpress 4 mins ago 5 Answer 70 views +22

Leave a reply

 Prev question

Next question