Share
A: [1,4]{-2}
B: [1, 4 ]
C: [ - 2, 1] ∪ [4, ∞]
D: [ - ∞ , - 2] ∪ [1, 4]
ReportQuestion
Explanation:
Given that,
|x2-2x-8|+|x2+x-2|=3|x+2|
|x2-4x+2x-8|+|x2+2x-x-2|=3|x+2|
|x(x-4)+2(x-4)|+|x(x+2)-1(x+2)|=3|x+2|
|(x+2)(x-4)|+|(x+2)(x-1)|-3|x+2|=0
|x+2|.|x-4|+|x+2|.|x-1|-3|x+2|=0
|x+2|{|x-4|+|x-1|-3}=0
Either, |x+2|=0x+2=0x=-2
Or,
|x-4|+|x-1|-3=0
Above is possible when |x-4|=4-x and |x-1|=x-1 then
|x-4|+|x-1|-3=4-x+x-1-3=0
|x-4|=4-xx4
|x-1|=x-1x1
Therefore 1x4x[1,4]
So the set of all values of x is given by, x[1,4]{-2}
Final Answer:
Hence the correct option is (A).i.e x[1,4]{-2}
solved
5
wordpress
4 mins ago
5 Answer
70 views
+22
Leave a reply