Share
Report
Question
We know that, 12+22+......+n2=n(n+1)(2n+1)6
Here,
t1=12=(21-1)2
t2=32=(22-1)2
Hence in this way the n th term is, tn=(2n-1)2
So,
12+32+52+....+(2n-1)2
={12+22+32+42+52+......+(2n-2)2+(2n-1)2+(2n)2}-{22+42+...+(2n-2)2+(2n)2}
=2n(2n+1)(22n+1)6-22{12+22+...+(n-1)2+n2}
=n(2n+1)(4n+1)3-4n(n+1)(2n+1)6
=n(2n+1)(4n+1)3-2n(n+1)(2n+1)3
=n(2n+1)3[4n+1-2(n+1)]
=n(2n+1)3[4n+1-2n-2]
=n(2n+1)(2n-1)3
Hence the sum of n terms of the series 12+32+52+.... is n(2n+1)(2n-1)3.
solved
5
wordpress
4 mins ago
5 Answer
70 views
+22
Leave a reply