Isosceles Triangles Formulas

Isosceles Triangles Formulas

It is a triangle with two sides of equal length in geometry. The angles opposite the equal sides are always acute and equal. The area of a triangle and the perimeter of a triangle are two important formulas for isosceles triangles.

What Are the Formulas for Isosceles Triangles?
It has two equal sides and two equal sides that meet at the same angle to the base, forming the third side. As a result, the altitude of an isosceles triangle is perpendicular to the vertex that is shared by the equal sides. With the help of the isosceles triangle formulas, we can determine the area and altitude of the isosceles triangle.

Area of an Isosceles Triangle: It's the space that the triangle takes up. Based on the supplied data, we have three formulas to find the area of a triangle.

Area = 1/2 × Base × Height
Area = b/2 √ [a2 − b2/4]
(Here a is the equal side, and b is the base of the triangle.)

Area = 1/2 × ab sinα
(Here a and b are the lengths of two sides and α is the angle between these sides.)

Isosceles Triangle's Perimeter: An isosceles triangle has three sides: two equal sides and one base. The formula 2a + b is used to calculate the perimeter of an isosceles triangle.
P = 2a + b.
(In this case, an is the length of the equal side and b is the length of the base.)

Isosceles Triangle Height: The height of an isosceles triangle is the perpendicular distance between its vertex and base. The phrase h =√(a2 − b2/4) is used to calculate the height of an isosceles triangle.
h = √[a2 − b2/4]

Download the pdf for Isosceles Formula

Isosceles Triangles Formulas

Related Links

Frequently Asked Questions on Isosceles Triangles Formulas